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FOREWORD 

The research on which this report is based was performed by the author 

at the Cornell Aeronautical Laboratory,   Inc. ,   Buffalo,   New York,   under Army 

Contract DA 44-177-TC-439,   Project Number 9-38-01-000,   ST 902.    The 

Transportation Corps,   U.   S.   Army Transportation Research Command,   Fort 

Eustis,   Virginia,   is the monitoring agency.    This report represents part 

of a research program,   which is devoted to the investigation of several specific 

problems associated with STOL/VTOL flight. 
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^LIST  OF SYMBOLS 

/yi a vector field; disturbance velocity field 

/U/   lamellar component field of A0 

/Mz   solenoidal component field of /Ü 

0   scalar potential of Aß, 

Al, A/ functions defined with Eq.   (6) 

a T" volume element 

d(T surface element 

Jti   position vector of   jr 

#1   position vector of ^Z-^ä 

Jt   vector distance from Jt     to     <^      (jrL~Jt—Jft ) 

'X.TJ. -Z:   Cartesian coordinates of point Jt 

3, ,1?    C Cartesian coordinates of point M- 

R    radius of large sphere on which   /y/     vanishes 

S    radius of small sphere in which     0       is not analytic 

sS/.O^  surfaces enclosing all points of field /Ut    where V-/W     and V //l^ 

are not zero,   respectively 

Rj radius of smallest sphere enclosing   5/ 

$K   vector potential of /Uf^ 

ty^ uniform     free-stream velocity vector 

\l velocity vector   (^-^^-^ aß) 

S)  pressure 

/O dens^y 
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LIST OF SYMBOLS  (CONT. ) 

Jr   body force vector (per unit volume) 

yL rotation vector (jn.= V X /i^) 

(£-£, vector element of streamline 

Jfh-f component of  JTi.   along streamline 

jQ.^ component of    JRL normal to streamline 

t!\    unit vector in direction of Jtfj @ 

H     absolute value of   ffl 

C/    First Curvature or flexure of streamlines in jet rotational layer 

&  First radius of curvature;    reciprocal of   C^ 

C   unit vector in direction of   Jt, ,   a    perpendicular to vector 

streamline element   CL^s 

S     wing surface as given by equation S (X^, t) -0 

J^K    position vector of points on wing surface 

^f^, vector distance from   Jft'   to ^^  (^^^ (^^z' ^/ 

Ju-W rotation distribution in wing surface region 

jß^y^yrotation distribution in wing wake region 

M.j rotation distribution in jet boundary region « 

/Y?/local slope of Aving surface 

/C   wing chord 

b   wing span 

7^    vorticity of the x-component of rotation; trailing vorticity in the wing 

wake and on the jet boundary 
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LIST OF  SYMBOLS   (CONT. ) 

Itiu vorticity of the y-component of rotation; wing bound vorticity 

7^. vorticity of the z-component of rotation 

^.Jl\\p cylindrical coordinates of point   Jft' 

(ri* sc'cosy> y £ = st's/ay) 

Xi^.'ZTcylindrical coordinates of point   JSC 

(f-=St' COS ?^     -Z- =St sm %?) 

R0     jet radius 

9^/   vorticity of the   t^     component of rotation; that component of vorticity 

on the jet boundary 

9^*   jet vorticity far upstream 

Vr0   disturbance speed due to jet vorticity far upstream,   \Vj  r J ., \ 

f-f    component of the jet vorticity tangent to the local streamline element 

cLty- at: mean   values across the jet rotational layer of the streamline deflections 

nr .■^.disturbance velocities due to wing vortex system 

/vy^'Wj disturbance velocities due to jet vortex system 

Mj     jet velocity    Vj^ V^* Vj0 

'b*   (%* = Rl-ZRcricosiT+vf) 
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I.        INTRODUCTION 

There is at present considerable interest in the aerodynamic performance 
O 

of the vectored slipstream type of STOL aircraft.    To a large degree the per- 

formance of this arrangement depends on the aerodynamic interaction of two 

systems,  the wing and the propeller,   and as such it constitutes a formidable 

problem in flow analysis.      In the interest of getting wing data,   one simplifying 

approach consists of neglecting the propeller,   per se,   and substituting for 

its system a jet or slipstream of indefinite extent.     The analysis is thereby 

reduced to one of an isolated wing in a nonuniform or rotational flow. 

It is usual in this kind of analysis to effect a further important    simplifi- 

cation by specifying an ideal jet and postulating,   on the basis of small disturbances, 

that the cross -sectional shape will remain essentially unchanged.     Under such 

conditions the problem is related in some respects to that of a wing in an open 

throat wind tunnel -  - a scheme that has been examined extensively by the 

method of images. 

The latter approach has been applied to the wing-jet problem by a 

number of investigators,   whose contributions can be conveniently grouped 

according to the parameter,   jet to main-stream velocity ratio.     For values 

® 1 of this parameter close to unity,   the problem was investigated by Koning   , 

2 3 4 5 6 Franke and Weinig   ,   Rüden   ,   Bausch   ,   Kyewski and Vandrey   ,   Vandrey   , 

7 8 9 etc.     For large values we have the developments of dauert   ,   Stuper   ,   Pistolesi   , 

Baranoff     ,   and others.     The more recent contributions,   namely those of 

11 12 Rethorst     ,   and Ribner      ,   seem to apply for all values of the jet-velocity ratio 

as does the work of Graham et al 13 

■ 
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The present study was initiated to investigate Jhe effects of jet curvature 
r  ati  i/V«tTOtM,**J 

'   oh the premise that at higher angles of flow deflection,   this factor should have 
® 3, an important influence on wing lift.    The jet boundary is he-re regarded as a 

vortical layer,  as is also the wing surface and its wake.    The jet vorticity 

distribution is determined subject to the dynamic equations of rotational flow 

which are applied in a thin region at the jet boundary.     This approach leads to 
{ft jX" 

the consideration of jet trailing vorticity or the-so^railed -"secondary vorticity 

14 15 which occurs,  as shown by Squire and Winter       and also by Hawthorne     , 

i in certain curved nonuniform flows. 

rr^ 

« 
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II.        INTEGRAL REPRESENTATION OF THE GENERAL VELOCITY FIELD 

To show clearly the present approach,   it will be convenient,   first,   to 

recall certain general properties of vector fields,   and how they relate to 

steady-flow fields of an incompressible,   inviscid fluid when the flow field includes 

free vorticity.     We begin -with the following theorem which is proved in Ref.   16. 

Any continuous vector field,    /IP     ,   defined everywhere in space and vanishing 

at infinity together with its first derivatives,   can be represented as the  sum 

of an irrotational vector field,   SUj      ,   and a solenoidal field,    Afo        '     ^''le 

representation is unique except for a vectorial constant.       Thus, 

where 

and 

V '  /IP 2  - 0 

(1) 

(2) 

(3) 

The application of this important theorem to the study of wing-jet flow 

fields is not precisely correct.     The steady-flow field about any body which 

sustains a resultant force due to fluid pressure will include a vortical wake, 

which,   along with the velocity field,   extends indefinitely if the fluid is inviscid. 

Such flow fields apparently do not meet the  requirement imposed in the theorem, 

namely,   that the vector vanish at infinity.     Nevertheless,   an important insight 

into flow problems involving free vorticity,   as is characteristic of jet flows, 

can be attained from the folio-wing considerations,- based on the more  restricted 

vector fields for which the theorem strictly applies. 
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Lamellar Vector Fields 

It follows from Eq.   (2) that ASj   can be represented by a scalar potential, 

such that 

yJJ,   =   — V(^    +       const,   vector 

and hence   w     satisfies the inhomogeneous potential equation 

(4) 

(5) 

Consider Green's Second Formula 

(6) 

where   M      and   A/     are two scalar point functions,   continuous in the first 

partial derivatives and possessing second partial derivatives,   and   tl      is the 

outward normal seen from the region of integration.    Let 

where 

SL - sv  -   M~M 

(7) 

In rectangular coordinates 

where   %     , sU   ,   -&      are the coordinates of point   «^f    ,   and   ^      ,  T)       ,   C 

are the coordinates of point J/t   .    So defined.   A'     is harmonic,   i.   e. ,   satisfies 

V2 N = Ö " • 

everywhere except at   yt       =0 and hence,   except at this point,   satisfies all the 

necessary differentiability conditions everywhere.     The volume integral in Eq.   (6) 
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is taken in the Jit      system ^er the region enclosed between a very large 

sphere of radius  R   and a very small sphere of radius    €      ,  with centers at 

the point Jt,   =0.    Now let M     be identified aa   u)      of   Eq.   (5) subject to all 

the necessary differentiability conditions. 

Equation (6) then becomes,  on the basis of Eqs.   (5) and (7), 

/ f-(7-M)dr^ 
ji 

(8) 

The second integral on the right of Eq.   (8) reduces to   ATTu)     by virtue of the 

assumed continuity of      CD      .    Hence,   Eq.   (8) can be written 

*^l-*rb"*)*-kL\t%-ir if-]^ (9) 

Equation (9) is an expression for the potential at points within /? in terms of 

the divergence distribution and the values of both 0 and its normal derivative 

onthe boundary. 

For our purpose we now specify the vector field   /Z/    to be such that the 

region,   or all the regions,   in which    S7 • /yf     is not zero,   are finite in extent 

and can be enclosed within a surface       3^, 

In Equation (9) consider    R       to be large enough so that if    /?y       is the 

radius of the smallest sphere that encloses      Sj     ,  then 

In the region between the spheres__i5__    and      /?.j  
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o 

and therefore    (b    in this region satisfies 

Vz 0 * 0 

Since   (P    represents the potential throughout space of a suitably restricted 

spacial source distribution,   it will vanish at least as 

J-^ -L-f.r R>>Rl 

This situation assures that the second integral on the right-hand side of Eq.   (9) 

vanishes for sufficiently large    /?     .    It should be noted that the corresponding 

velocity field also vanishes at infinity.    Thus, 

l<'M-t(v"v^t (10) 

It is shown in Ref. 17 that 0 , as given by Eq. (10), and its first derivatives 

are in fact both defined and continuous everywhere in the field if   ^»/T/ is 

bounded in extent, as was assumed, and is at least piecewise continuous. The 

higher derivatives are also shown to exist provided the divergence distribution 

satisfies a Holder condition. 

Solenoidal Vector Fields 

Let 

with the condition 

/^ = V* Ik + oonst. vcchr 

V-£K =0 

(ID 

(12) 
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By forming the curl of Eq.   (11) and applying the vector identity 

0 

Vx Vv^=-V2^-«■ V(V-^) (13) 

for which the extreme right term vanishes by Eq.   (12),   the following is 

obtained 

VZA= - VX/t/2  =  V*/W (14) 

Hence,   like   W     the components of    ^      satisfy the inhomogeneous potential 

equation. 

Again,   if the region designated    Sg  .   in which   ^J t SM       is not zero, 

is finite in extent,  then it can be shown on the basis of Green's Second Formula 

and the harmonicity of the components of   Ä      exterior to     S^   that 

*-4fffir(t**'yr (15) 

From Eq.   (15) one may observe that each vector element of rotation,   V^/W   , 

contributes a vector element parallel to   Jh      .    However,   it can be shown, 

since 

V'(V*/yr) = 0 (i6) 

that the net effect of all radial components of V * /TJT     (that is,   radial from the 

position of     A      ) vanish.    Hence,   more concisely it is the tangential component 

of rotation-element that contributes a net vector element parallel to    ^\ 

Evidently all the conditions concerning the necessary functional continuity 

of the distribution   v ' /T/>  apply to the components of    y X/If   as •well,   and in 

addition the condition imposed by Eq,   (16) must also be met.     The latter condition 
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implies that the rotation distribution itself must comprise a solenoidal field. 

Further consideration will be given this fact later. 
O 

Equation (1) can be expressed in terms of spacial distributions of the 
o 

divergence and the rotation on the basis of Eqs.   (4),   (10),   (11),  and (15). 

/2/ = _      / 

4-77^ 

yJS^LUr*' -rL—V*f¥m-dr+ vector const 

I_JJL{1'M) tir^^pUß    ^r+ ncf0r const. 

where 

B.= Vx/v 

(17) 

e 

For any given vector field,*   AJ    ,  which satisfies the conditions of the theorem, 

the distributions V'/W   and JtlL are furthermore unique.     (See Ref.   18:   Chapter 

IV; Section 20. ) 

Solenoidal Flow Fields 

In steady-flow problems only certain information concerning the flow 

field is given; e. g. ,  the conditions far upstream,   the geometry of solid boundaries, 

Sand the trailing-edge conditions.      The flow field must be determined from these 

data alone,   and its establishment involves,   in essence,  the determination of 

appropriate distributions of the divergence and the rotation.      Very little is 

known concerning distributions,   however,   except on surfaces.     Equation (17) 

offers a means by which surface distributions can be established for certain 

practical problems. 

As pertains to steady-flow fields of an inviscid,  incompressible fluid, 

Eq.   (17) requires some further consideration in view of the conditions imposed on 
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the vector field in connection with the derivation. 

First,  the distribution of rotation in the steady inviscid flow field about 

a lifting body,   in contradistinction to the condition imposed in the preceding 

development,   extends indefinitely in the wake.    For our purpose,   Eq,   (15) is 

presumed to apply generally,  provided,   of course,   the integral exists. 

Second,   since the fluid is taken to be incompressible,   the entity of flow 

divergence  never enters into the actual field of flow.    Rotation,   on the other 

hand,  will certainly be present in the wake if there exists a resultant force 

on the closed stream surface of a body.    Provided the fluid is incompressible, 

the former statement permits us to formulate any steady-flow field which 

possesses a continuous velocity vector (hence one which vanishes on the body 

surface) on the basis of solenoidal field concepts alone. 

On the other hand,   if the fluid is also inviscid,   in which case the velocity 

will not vanish at the body surface,   then the flow field must be continued 

analytically into the region within the body surface in order that it meet the 

requirement of a continuous vector field.     Under such conditions it may be 

observed that the flow field as a whole does not comprise a definite vector 

field.    But this  situation is precisely the one which again permits us to treat 

such flow problems on the basis of purely solenoidal flows by so defining the 

analytically continued flow field. 

Since we will be dealing exclusively with solenoidal flows,   it is essential 

to recall that the rotation distribution is  subject to certain basic    constraints. 

First,   the divergence of the rotation is everywhere identically zero 

V- (Vx/^) = 0 
(18) 
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Therefore,  the rotation vector field itself comprises a solenoidal field.    The 

same can be said of the rotation of the rotation vector,   etc.      Second,   rotation 

is a convective property of the fluid particles subject to a dynamical requirement 

which can be derived from Newton's second law.    Thus, 

(19) 

■- 

where   V is the flow velocity    ( Voo "^ ^ j 

■yG/ is pressure 

IF is extraneous force (per unit volume) 

/O is density 

By operating with the curl on Eq.   (19) and applying Eq.   (18),   the following 
#■ 

form of the Helmholtz equation is obtained 

where 

ib 

For steady conditions the preceding equation becomes 

(v-v)jni= (ii-v) v 4- (20) 

Equation (20) governs the rotation distribution.    A few elementary solutions of this 

nonlinear system have been determined for the condition of force-free flow: 

one relates to a circular jet in a parallel stream.    Another  obvious solution 

for trailing vorticity is 

il =  const.  - y 

u 

® 
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® 

On the other hand,   integration of this equation along an arbitrary streamline 

leads to a relationship between the normal and tangential component of the 

rotation vector which will prove to be of considerable value in determining 
© 

the vorticity distribution in the vortical layer of a deflected jet. 

Consider the line integral of Eq.   (20) along a streamline whose vector 

element is designated   cLjb* 

J[(y ■ v)n]'djt> -ff(n • vjv/. ^ + fv*F . ^ 
(21) 

Since   V      is parallel to   ctJd      ,   the first term on the left may be rearranged 

as follows 

ff(y-v)fij'd* = ffv(4^ - v)/2/- ^ 

=/^ • ^ 

where Jl\j  and   it u   are respectively the tangential and normal components of 

JllL     referred to the direction of the streamline element,    a.^£>   .     The operation 

involving the vector derivatives along the streamline,   which lead to the last 

expression,   is carried out with the aid of Frenet's formulas (see Ref.   19). 

Here,    C/    ,   is the First Curvature or Flexure of the streamline; its reciprocal 

11 AI-1190-A-6 
■ 



@ 
® 

is equal to the first radius of curvature,     Jl,     .    The vector     C      is a unit vector 

perpendicular to the streamline   element   cL4> and in the direction of  -/?, 

The first term on the right-hand side of Eq.   (21) can be developed as 

follows: 

J J        ein 

v/here CCffl/anis the unit vector in the direction .v tf/y . 

The preceding developments substituted into Eq.   (21) give,  when   [f 

is taken to be zero 

J'vciaT-/vc/SlN(n'c)d^=/hTc(.V^f-CLNdVcC^ 

or 

K^) -Jfy-ft^+/-^(m- v ^ 
Therefore 

Jk- ^fJk^riL + qvdn-C^d^ + const. 
(22) 

Equation (22) is an expression for the tangential component of the rotation along 

a streamline,   in terms of the integral along the streamline of the normal component 

of rotation.    The tangential rotation,   -ill-      »   includes both the initial value of this 

component and the accumulation of the "secondary" rotation which is known to 
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occur in certain curved nonuniform flows.    The latter arises when a fluid element, 

which has a component    of rotation normal to its projected streamline,  moves 

along a streamline whose geodesic curvature on the Bernoulli surface is other 

than zero. 
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III.      DEVELJOPMENT OF THE WING-JET LIFTING SURFACE EQUATIONS 

0 

We now apply the preceding developments to the formulation of the wing- 
0 

jet problem for a uniform,   circular jet under the conditions of small deflections. 

The integral relationship for the disturbance flow field is given by the 

solenoidal part of Eq.   (17) 

M = — 
1    fJL&M  jr 

trt J A' 
(23) 

Let    5-0    define the wing surface.    The unit vector,   normal to the surface, 

will then be 
V5 
|vs| 

and the condition that    S ~ 0   be a stream surface is 

(v- + ^'-^fr = 0 
|VS 

where     "Vj«    is the uniform free-stream velocity. 

The condition at the wing surface is,   therefore. 

4ir 

(24) 

(25) 
w 

where 

and   -^t^ are points on the wing surface.    Equation (25) can be arranged so that 

the integral is taken over three regions where the rotation is known to exist; the 

wing region,   the wing wake region,   and the jet boundary region.      Thus 

14 AI-1190-A-6 



4ffVm' vs-vs-f M^fL*. ^+vs >fi**n ww ctr 

*n •j. . dr (26) 

A. \N 

Equation (26) may be developed into a more useful form on the basis that all 

regions of rotation are surface-like and hence can be represented by vortex 

layers.      For this purpose,   it is convenient to introduce a Cartesian coordinate 

system with      % in the direction of     v,» .   IJL, along the wing span,   and   f- 

vertical,   as shown in Fig.   1. 

The wing is considered of arbitrary planform,   but without spanwise twist. 

In the range 

let its surface be represented by 

o     ^ A*   <^ 

S =  0    -   2r   +  f(K> (27) 

Then 

3/ - n*))  ^- = 0,  ^-=1 
^T 1% (28) 

With Eq.   (28),   the term on the left-hand side of Eq.   (26) becomes 

^TTVco-VS^ ÄTTVoo fYx} (29) 

and each of the terms on the right-hand side can be expressed in the following 

form 
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^[JktJL^ m JJjktU%^TJ^^ 

(30) 

8) 

If the local surface inclination,    -f- (x),  is everywhere small,  then the wing 

and wing wake terms can be simplified and combined to give the usual surface 

integral relationship for downwash from lifting surface theory.      Thus,  for the 

wring and wing wake terms,   the first triple integral term on the right-hand side 

of Eq.   (30) can be neglected in comparison with the second,  the individaul terms 

being of higher order in \f'(*) wa^x 
than those of the second triple integral. 

Therefore,  the first two terms on the right-hand side of Eq.   (26) can 

be represented approximately as follows 

vs 

-L 4 r* 
(%■ 

-f   J*\   [(*-$)*+Cf-yp*] ' 

(31) 

where 
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© 
The terms on the right-hand side   of Eq.   (31) can be rearranged into the following 

© 
form 

»1 
i 

2 

2. 

k 
Partial differentiation of the first term above with respect to    72       and the second 

term with respect to     Co   ,  together with the divergence relationship 

dr. X     -_ -  _  ^ Mf 

yields the following expression for Eq.   (31) 

(32) 

vs cLtt -«-vs' Mw*Mww 

'WW 
M* 
** 

ctr 

(33) 

LL r1   x:l—-j^i)-^-^^ 

It should be stated concerning Eq.   (31) that we anticipate a discontinuity 

in    liUs   at the wing-jet boundary.    Equation (32) therefore does not apply at 

such points and Eq.   (33) is developed in that light. 

Consider now the third term on the  right-hand side of Eq.   (26).     Its form 

as given by Eq.   (30) can be expressed in cylindrical coordinates as follows, 

with the   x-axis of the two systems coinciding. 

Q 
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Let 

^ ~ Jt s/n i? 
=■ si'cas y 
= ft'sin y> 

J7i = flTyeosy + Sl^smy 

Slyx-flyusmj +{!„ cos 10 

and therefore 

(34) 

vs 

-/- 

Equation (35) will be simplified under the conditions that the jet is 

initially circular and undergoes only small deflection and cross-sectional 

distortion.    The jet rotation,  M j    ,  will in that case be essentially in the region 

Jt       equals a constant,   /?#       ,  and terms containing   -*l~n,    can be neglected. 

We may write -*„, ^ £Slv a. n.' 

rx =fnx a.* w 

On this basis,  the expression,   for the downwash on the •wing surface,   due to the 

jet vorticity,  becomes 
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+ R0 
(37) 

where the wing surface is taken to lie in the plane /z/'=0. 

To a first approximation,     'X»»'   »   in t^16 first term on the right-hand 

side of Eq.   (37) may be taken to be the constant value of jet vorticity far upstream, 

3^,*,      .in which case the expression can be integrated at once to give 
tr0 

¥m^ L J0   [(*~%ft ^ +Roz- Zf*0 <**fj* 
(38) 

R* r<   Y ^47r       -f"-    V < 

^ 0 for    *f    >   R0 

The other surface integral on the right-hand side of Eq.   (37) can be 

developed by integration by parts allowing for the fact that      \/iy will be discon- 

tinuous at the wing-jet boundary.    Thus,   partial integration of the   "K^terrn 

with respect to     ID       yields 

9   -(/>   J 0 
;(39) 

+/C 
v<» 

■oo 

7^    f I yu-w-h^-hzs-zy^y  W&fyk) vy/l 
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where use has been mad^ of the fact that 

7^ fzr- e) - TCn+e) 
■ 

and also of the condition « j 

at appropriate points. 

Integration by parts of the J /      term on the variable    fcp gives 

*, 
Cy-toVS^Ty citfc/^ 

= "/?. 

-/£ 

ffit^-Zf-*,***?/ 
^Yx 

'^ r±7r (v-** ^y)Cy'^)JTt^^ 

(40) 

f-4«? ^V/PäS^^^^/^V^;^^^^^^^^" 

The total contributions of the jet vorticity to downwash at the wing surface, 

as given by Eq.   (37),  consists of the sum of Eqs.   (38), (39).   (40),     These relation- 

ships,  together with the wing vorticity effect as given by Eq.   (33) and also 

Eq.   (29),   substituted into Eq.   (26) yield the following expression for the total 

downwash on the lifting surface. 
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oiff 

+ ** 
*+*, r nrr' 

?r. 
/- eo 

Uz^sl 

A tit M' ('K+Ro) Y- £j^ 60 (y -#.) 

(41) 

■cL-ydi 

(^^pWfW^Y-       Ct-^fx-U2 ffy-O 2- 

Ajr^TJ fa^) 
\ % dt, 

where 

The jet trailing vorticity distribution designated      a x 

equations can be determined approximately by the use of Eq.   (22),   which applies 
• 

along  streamlines within the jet vortical layer.      Along any particular streamline 
i 

not subject to body forces,   we have 

in the above 

(42) 
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It can be shown that,   in the absence of body forces,  the velocity derivative 

in the direction of   ft      ,   which is both normal to the streamline and tangent 

to the Bernoulli surface is also equal to   Vm &/ {PV><C/T) where C, (d ' £.)   is 

the geodesic curvature of the streamline relative to its Bernoulli surface.    In 

Cartesian coordinates,   the flexure,     Cf      ,   may be expressed as follows 

For streamlines curved only slightly from their original    X     direction, 

CZ-d' is approximately    a,)f ,   and the above expression can be represented by 

2- 

(43) 

3 

Furthermore,   for small values of jet deflection and cross-sectional distortion, 

Ot ' (C   can be evaluated on the cylinder /^ -Caasr-in which case it can be 

expressed as follows 

where     ^     is the azimuthal coordinate introduced previously. 

Under these conditions,   Eq.   (42) may be written as follows 

a 
V 

z: ^  2 £ ^f'" ^ + - V^r 

(44) 

(45) 

If,     in addition,   V       and   -»2^    are assumed not to vary mifth along streamlines, 

the integration can be performed and one obtains 
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nT^ znyf-wTf Af -/- cas zf-£ 
dt oL-t 

(46) 

Integration of Eq.   (46) across the jet vortical layer yields an expression 

for the  secondary vorticity.    Here,   we apply the Second Theorem of the mean 
-•- 

for integrals to obtain 

%-= 2V '-^y-ü-^HI (47) 

where       ^tf/J /        anci       (V^:/CLTL     
are aPProPriate mean values of the streanfline 

deflections across the vortical layer. 

The      J x'    component of the jet vorticity can now be determined for the 

condition of small deflections by taking appropriate components of     fj-    and 

X^/    ; the result is 

^ = v/- yfy + - ^ (48) 

depends 

It may be noted that the magnittide of     / y     in the jet vortical layer 

on the product of     Qqy   ==    vr~ v /       CP and the mean deflections of the stream- 

lines which are of order   / (V)  .     For small values of     Vj~ \/oo       •   *'   e-   0^ 

order y^ f (x)       ,      YyC       is therefore of higher order than the wing 

vorticity terms retained in Eq.   (41) and accordingly such terms can be neglected 

in determining first-order effects on the -wing.    On the other hand,   the lift 
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distribution,   to a first order in small values of   _!•£—Vo0   ,   as for example     Koning, 

Ref.   (1),   must necessarily be second order in terms of wing angle - of-attack. 
© 

The mean deflections    cL/ty/dsT^ and      (Z-i-/OsT? may be expressed in 

terms of the normal disturbance velocities evaluated on the jet vortex sheet. 
m 

In that case^ • • 

where   /ifj-  and   Tlfj- are   due   to   the   jet  vorticity,   and /2/20i-  and tl^uj     are   due 

to   the wing vortex^system. 

,/»   ni-TT, 

nrr = 
4rr. 

Wj- -1* 
47yL 

'- 00  Uo 

'fyo /Ji^ 

-co  ^0 

ftp fsm IP' - sm 

L{(* -t>)^Z *t 
2//- CCS   (V- VT/} ^J (50) 

w^- #<, s/niy 
l(W r* dsj.iz 

w*- 

%     — / 

- _L_    '   ' 
4 ft n 

Y? 

6   1/-C. 
ä 2 [Cz-$,)t'+ fiö*~2 **Va6*V'+>l*J 

V* 

Substitution of Eqs.   (49) and the first two of Eqs.   (50) into Eq.   (48) yields 

the following expression 
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— tw R0 

rtoo   rtfT*- 

*/*. 

Vv -h^ V^-h Vr 

® 

(51) 

Let 

K ^;tf) = r^x^)-!---!^    ^^>- It, Xrf 

Since     Jx (Xj^jis  symmetrical   about the jet periphery,   the contribution of the first 

term on the  right hand side of Eq.   (51) depends on the higher differential coefficients 

of the Taylor expansion than the first,   and therefore,   according to Eq.   (48) on 

the derivatives of the streamline deflection higher than curvature.     The  contribution 

of the second term,   however,   depends on the first differential coefficient of the 

^l^ I ^jT/expansion.     It may be noted that even this coefficient already depends on 

the product of streamline deflection and curvature.     For small values of deflection, 

curvature,   etc. ,   Eq.   (51) may therefore be approximated by 

^-- + 2-Y^ o^, Q£ii^ 
Vn + Vr 

(52) 
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The last two of Eqs.   (50) can be expressed as follows 

2-        /    2 -iYty      / j f+      f*-&) 
^^" A A Tf/W / ^ Tt^&TW^* 

2- 1 

AJS"      -    — 

C_ 
'L 

(53) 

_     /    f * f%   9HV     R0 coi-jy-n I + 

ßt-KT + Ro*'*"*1' vJ/(Hf+'J>'' 
d^dr? 

where       ^      -   ^ - Z ReY)  cos IT + Yl 

Upon substitution of the above expressions into Eq.   (52) one obtains 

2£L    (/?0-v2^^v    ^ 

,4       A.C. 
■2 

3^ 

^7 ^ 

^ IJ.s, H   vjc^r^W^ 

n 

Ro-y] COSTS' 

(54) 

26 AI-1190-A-6 



cLkj cL^i 

_     R0 cos TJ* 

4rr 
_     _ /yy (-Rote)-)V(-*,-£)7 |2^^j ,    «   1     V 

For large values of     ^       ,   Eq.   (54) becomes 

and the derivative of Eq.   (54) with respect to        ^        yields 

(55) 

« 

VCT.+ Vf     •)/, 

fE^j 
*_= — 

1/2. ^ /-i ai / 

^ TT 
'-4 c/-c 

2. t 
="? i2 

^   2 (56) 

ci^dLyi +  

By considering once more   the rotational flow aspects of the vortex 

sheets,   it can be  shown with Eq.   (20) that if the wing lift is considered to be a 

constant across the jet rotational layer,   there will be no shed   vorticity arising      # 

at the wing and jet-boundary intersections.     Therefore 
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AU (+*,)=-AX,Co) 

o 
and      AK^(-^)=-A^M 

(57) 

Equations (41),   (55),   (56),   and (57) complete the formulation of the 

lifting surface problem for a wing-jet combination for the condition of small 

flow deflection.   -Since the system of equations appears quite formidable in its 

present form,   one must,   as in the case of ordinary lifting surface theory, 

resort to approximate methods,   employing expansions that are suitable for 

special classes of configurations in order to obtain numerical results.    It 

appears that wing aspect ratio offers a suitable expansion parameter for this 

purpose,   since the limiting cases of both high and low aspect ratio yield great 

simplification in ordinary lifting surface theory which is implicit in the present 

p roblem. 

This course has been pursued for the case of a high aspect ratio wing and 

is presented in the Appendix.     For simplicity,   jet curvature terms have been 

neglected.     The lifting surface equations given here in that approximation, 

reduce to a couplet of integral equations,   the  same as given by   Graham et al. 

in Reference  13 but -with somewhat different expressions for the image strength 

factors.    In pkce of the quadratic expressions ü^ - ^^ A/j--f-'  Vg^J    and 

^^r^to/(Yr ^^oo) which occur in basic image analysis of a perturbed circular jet, 

the present development obtains linear expressions [l/j-'Vooj/fVr ^Voo )      anc^ 

2-^00/Vj-tVgo respectively.    Numerical results,   showing the effect of these 

differences are given in Figure 2 where a comparison of the wing lift increment 

due to the jet is made with other existing theories and experiment for one set of 

conditions.     The present developments yield values of wing lift within the jet region 

• 
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considerably higher than previous theories and available test data for a nonuni- 

form jet.    As discussed in the Appendix,  this difference is due to the approxima- 
0 

tions used in determining the mean deflection of the streamlines on the jet 

vortex sheet. 
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IY.       CONCLUDING REMARKS 
© ® 

A formulation of the lifting surface equations for a wing-jet configuration 

is given for the case of a circular jet experiencing small deflections.    Jet 

curvature effects are included but jet cross-sectional distortion is neglected. 

It is shown that any steady flow of an incompressible,  inviscid fluid 

can be represented as a solenoidal field with the corresponding rotation distribu- 

tion subject to the dynamical equations of rotational flow.    A useful streamline 

integral of the latter system is derived that gives the distribution of the stream- 

wise component of the rotation along curved streamlines within the jet rotational 

layer.     This is identical with Hawthorne's expression for secondary vorticity 

in nonuniform flows.    The flow field of the wing-jet combination is first rep- 

resented as a general solenoidal  field.    It is then specialized,   for the case of 

a lifting surface and an initially uniform circular jet,   to one involving only 

vortex sheets. 

On the  jet sheet both the normal and the streamwise components of 

vorticity enter into consideration.    However,   the downwash effects of the jet 

on the lifting surface,   with exception of discontinuity effects at the wing and jet- 

boundary intersections,   can be expressed entirely in terms of the trailing 

component of jet vorticity and its  streamwise derivative. 

With the aid of the aforementioned streamline integral of the rotational 

flow equations,   an approximate expression for the jet trailing vorticity is 

obtained in terms of the wing vortex system.     For small values,   the jet trailing 

vorticity depends on the product of the initial jet vorticity far upstream and that 

component of the local flow deflection which occurs due to geodesic curvature 
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of the streamlines on the jet vortex sheet.    Its value is a maximum on the sides 

of a downward deflected jet and vanishes at top and bottom with sign such as 

to cause upwash within the jet and downwash on the outside. 

For simplicity, jet curvature effects have been neglected in that develop- 

ment.    The resulting system then reduces to a couplet of integral equations the 

same as given by Graham etc in Reference 13 except with image strength factors 

altered.    Numerical results,   showing the effect of these differences,  yield 

values of wing lift within the jet region considerably higher than previous 

theories and available test data for a nonuniform jet. 

The approach taken here',   and basic developments,   lend themselves to the 

investigation of other problems involving jet curvature effects.     Thus whenever 

a jet is turned toward alignment by a main flow,   there is as a consequence, 

and in accordance with the general prescription,   a redistribution of its vorticity, 

the immediate effect of which is a self-consistent flow field both within and 

exterior to the jet.     Through the extended influence of this flow field,   jet 

curvature effects manifest themselves on solid boundaries of wings,   propellers, 

and other similar parts. 

• 
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APPENDIX 

•      LIFTING  LINE  APPROXIMATION 

. If the high aspect ratio approximation,   i.   e. ,    -/-fej KX j^""^?     <   ^V 

which ordinary lifting surface theory is reduced to lifting line theory,   is adopted 

and applied to Eq.   (41) with the jet curvature effects term neglected,   an integral 

equation is obtained for the spanwise circulation distribution from which numerical 

results can be derived quite readily?    Under such conditions,   Eq.   (41) with     fl* L00) 

given by Eq.   (54),   becomes 

^-^4 4rrfßlv*i- 

?r    Cv--^ *** V) fa-V cos y) dnd tj      (i-A) 

The above equation,   for the case of a flat plate wing,   i.   e. ,   f^ fXj - oC     ,   can 

be written as follows 

where 

fty) *• ZoL Mt^p-^i: 
(2-A) 

f^Zl/li-U 
?^ It"1? 

+ X*      Vr-Vc 
<2frrA 

co *    ^P        C<i4,-/?öc*tZf)CR0-r?coSZSl) 

W*  \\/r*-V*>J J0  J,t,    ^V    ('%7-2-'%H.*>*y+R.t-)fä-Zv%0e*syr*tt) 
dLyfdL tj? 
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Inversion of Eq.   (2-A) yields 

O/u - 

Now 

^=V^ 
-I -x 

2. 

^^) 
(3-A) 

0 

® 

2 

which,   with   »/^    as given by Eq.   (3-A),   becomes,   upon integration 

rc**}'-^. Fh) (4-A) 

Equation (4-A) with   FQ^r) as defined following Eq.   (2-A),   is an integral equation 

for the wing spanwise circulation distribution,   l(w\  • 

In the expression for   f'C'tyJthe term which is a surface integral can be 

reduced to a single integral by performing the integration on   "^     .    Equation 

(4-A) becomes therefore for    0<C ty <C RD • 

b 
1 -ir I 

2. 

>V  ^'^ 
^ (5-A) 

6f \ \/Ti-Vt 

and for R«, < ty <t 

eo 
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AV)=    TtCooVe 

H \\I;+Vt 

Vj-V* 

in I     ® 

_4   iv  T* 
obri 

oiri 
(6-A) 

#t U+i4 
Z7^       /   \ 

Equations (5-A) and (6-A) are equivalent to Eqs,   (3, 11) of Reference  13,   which 

were developed on the basis of simple image theory.    In fact,   if the present system 

is integrated partially one obtains Eqs.   (3, 11),   but with different expressions for 

the image strength factors that precede the integrals.    Instead of n/j. - V^, ]/(Vf + V   ] 

and       ^ ^r v,/(vj + Yo ] ^e present expressions turn out to be (Vj -yl»^/(V -f*/   ] 

and       ZV^/^+Voo)        • 

The procedure used here for solving Eqs.   (5-A) and (6-A) makes use of 

a single sine series expansion for   i   .The leading terms of the series were 

determined in the usual manner by solving   sm,      simultaneous equations which apply 

at /yri discreet points along the semi-span of the lifting line.     For this purpose it 

was convenient to let     f^      be expressed as follows 

r^^rrccLVrZA^ s,n(z*>-l) 9 

The section lifts coefficient, 'defined as 
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can then be written as follows 

y*> 

where 

Vj- inside the jet 

* I Voo outside the jet 

Numerical results for the spanwise lift distribution obtained with a five 

point collocation solution of the present systems of equations are shown in Fig,   2. 

For these computations,  the five points were taken according to the following 

formula 

f = T cos ^ 

and the remaining parameters were 

/n = 1,2,3,4, 5 

V, 03 

V, 
= . 735 

Wing aspect ratio    =   5 

-^2_    = . 12 
b 

The theoretical curves in Fig.   2 show,   in essence,   a comparison of the lift 

increments due to the jet as  computed by the various existing theories.     In the 

present analysis,   this increment was  computed by subtracting out the theoretical 

lift for the wing in a uniform flow obtained by using Glauert's lifting line theory. 

The unusually high value for the maximum lift predicted with the present 

theory as compared with that of Reference   13 reflects the effect of the difference 

in the constants cited above,   as ■well as a possible difference which may arise 

from the  respective methods of treating the equation.     In Reference   13 two sine 

series were employed in the expansion of   I        ,   one applying outside the jet and 
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the other inside the jet with a matching of the lift at the wing®jet boundary.    A 

single sine series expansion was assumed for   / in the present computations. 

It should be noted further that the present lifting line analysis neglects 

jet curvature effects,   and,   in addition,   is based on the condition that    Vj-     is 

not close to    V^,      ,   more specifically,  that   yj-0~*J~ *oo ^s 0^ order   V«o    • 

The numerical computations,    however,  have been carried out for 

V, jo = . 360 
loo 

which is close to the range where wing effects to the second order in angle of attack 

may be of importance. 

In view of seemingly poor agreement with experimental data,   it is at this 

time difficult to justify the present method over previous analyses of the wing- 

jet interaction problems.    Nevertheless,   it is felt that the present approach, 

with the jet boundary,regarded as a free vortex sheet,   affords a more realistic 

model than does   the image technique,   as well as a better understanding of the 

effects of the controlling parameters,   i. e. ,   jet deflection,   curvature,   etc. 

If the  results of simple image theory of Reference  13 are to be recovered, 

one is led to conclude   that either Eq.   (49).   or the ensuing developments leading 

to Eq.   (52),   must be modified.     This follows from the fact that the expression 

for    Ov      on the jet boundary as given by Eq.   (48) corresponds exactly to that 

which is obtained with the flow fields from simple image analysis if   gat       and 

CL^. are taken to be the mean deflections of the streamlines on the two sides 

of an elementary jet boundary.     Equation (52) on the other hand cannot be so 

reconciled.     The need for further analysis is suggested in this area.     In addition, 

it is recommended that a more complete development in the lifting line approximation 

be carried out to include the jet curvature effectS terms. 
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It should be stated that experimental data,  more consistent with the 

theoretical flow model than is at present available,   is required in the final correlation. 

The ideal jet,   which is usually assumed for simplicity of analysis,   can perhaps best 

be simulated in a wind tunnel by employing drag screens       rather than a propeller 

whose wake,   due to its characteristic    loading,   is generally nonuniform.    This 

is,  of course,  not to lose track of the ultimate problem which pertains to a 

real propeller and wing combination,  but merely to test the ideal jet model.    It 

could well be that the realistic problem requires an even more elaborate model for 

the propeller wake such as,   for example,   a series of concentric ideal jets. 
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■Figure  2    COMPARISON  OF VARIOUS THEORIES WITH  EXPERIMENT 

(FROM RETHOR8T) 
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